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Abstract. In an earlier study of inexact Newton methods (JCP, 1997), we pointed out that
certain counter-intuitive behavior may occur when applying residual backtracking to the Navier–
Stokes equations with heat and mass transport. Specifically, it was observed that a Newton–GMRES
method globalized by backtracking (linesearch, damping) may be less robust when high accuracy is
required of each linear solve in the Newton sequence than when less accuracy is required. In this
brief discussion, we offer a possible explanation for this phenomenon, together with an illustrative
numerical experiment involving the Navier–Stokes equations.

Key words. Navier–Stokes equations, Newton’s method, backtracking, linesearch, damping,
Newton–GMRES methods, Newton–Krylov methods, Newton iterative methods, truncated Newton
methods, inexact Newton methods.

AMS subject classifications. 65H10, 65F10

1. Introduction. We consider the simulation of fluid flow governed by the
steady transport equations for momentum, heat, and mass transfer. Discretization
of these equations gives rise to a system of nonlinear algebraic equations, the numer-
ical solution of which can be very challenging. In most nontrivial calculations, the
solution process is computationally intensive and requires sophisticated algorithms to
cope with high nonlinearity, strong PDE coupling, and a large degree of nonsymmetry.

Newton’s method is a potentially attractive nonlinear solution method because
of its ability to address fully the coupling of the variables. In addition, it enjoys rapid
(typically q-quadratic) convergence near a solution that is not hindered by bad scaling
of the variables. However, the implementation of Newton’s method involves special
considerations. Determining Newton steps requires the solution of very large linear
systems, and iterative linear algebra methods are typically preferred for this. Conse-
quently, obtaining exact solutions of these systems is infeasible, and the appropriate
method is an inexact Newton method [4].

In this paper, we explore the counter-intuitive relationship between robustness
and solution accuracy of linear subproblems within an inexact Newton method. Specif-
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ically, we focus on Newton–GMRES methods, in which the iterative method GMRES1

[12] is used to solve approximately for steps of Newton’s method. Newton–GMRES
methods are representative of the broader class of Newton–Krylov methods and have
enjoyed considerable success in fluid flow applications. Following [15], we assume the
primary mechanism for enhancing robustness is a backtracking (linesearch, damping)
technique that shortens steps as necessary to ensure adequate decrease in the residual
of the nonlinear system.2 See [7],[11], and [15] for discussions of the implementation
of backtracking in Newton–GMRES methods and experiments that show its effec-
tiveness on fluid flow applications and other large-scale problems. See also [5] for a
general treatment of backtracking for exact Newton’s method and [6] for a discussion
of backtracking for general inexact Newton methods.

The accuracy with which Newton linear subproblems are solved effect both the
solution efficiency and robustness of the inexact Newton method. This paper dis-
cusses robustness issues as solution efficiency is fairly well understood. In particular,
efficiency suffers when requiring too much subproblem accuracy away from the so-
lution as this leads to oversolving (cf. [7]), i.e., reducing the linear residual norm
without achieving a commensurate reduction in the nonlinear residual norm. Since
the purpose of a step is to reduce the nonlinear residual norm, oversolving is clearly
associated with unproductive iterations of the linear solver. It should, however, be un-
derstood that considerable accuracy may be appropriate near the solution in order to
realize the rapid local convergence of Newton’s method. An effective strategy for min-
imizing oversolving is to use nonlinear residual information to determine adaptively
the accuracy with which the linear subproblems are solved. That is, the accuracy
required in solving the linear subproblems varies as the nonlinear algorithm proceeds,
and the accuracy requirement at each step is based on how well the residual of the
linear system reflects the behavior of the nonlinear residual. (See [7] for an exten-
sive discussion.) This strategy often drastically improves computational efficiency by
reducing oversolving in the sequence of linear subproblems.

It was demonstrated in [15], as well as in previous experiments in [7] and [11],
that requiring too much accuracy in solving the linear subproblems can cause Newton–
GMRES methods to become less robust, even with a backtracking globalization. In
particular, it was shown that requiring too much accuracy may result in more fre-
quent failure of the backtracking routine to determine an acceptable step, as well as
inefficiency. This might seem counter-intuitive: one might expect overly-stringent ac-
curacy requirements to cause the method to work harder but not to fail altogether.3

This counter-intuitive behavior is the subject of this brief note. In §2, we develop
heuristics that suggest why this phenomenon occurs. In essence, these indicate that,
as the GMRES iterations proceed, the resulting inexact Newton step is likely to grow
increasingly long, especially if the Jacobian (matrix) of the nonlinear residual has
small singular values. Furthermore, the step may become increasingly nearly or-
thogonal to the gradient of the nonlinear residual norm, especially if the Jacobian is
ill-conditioned. If the problem is more than mildly nonlinear, then a long step that

1For convenience, we usually do not distinguish between GMRES and the restarted version
GMRES(m).

2Trust-region methods, which are also popular techniques for enhancing robustness, are not
considered here. While these methods have many attractive features, their implementation tends to
be more problematical when solving large-scale nonlinear equations because of the need to evaluate
products involving the transpose of the Jacobian.

3Indeed, if f is continuously differentiable, then reducing the length of an inexact newton step
sufficiently always yields an acceptable step [6].
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is nearly orthogonal to the nonlinear residual norm gradient may have to be reduced
in length many times by backtracking in order to achieve acceptable reduction of the
nonlinear residual norm. Indeed, so many backtracking reductions may be necessary
that a practical backtracking routine may declare failure before an acceptable step
is found. Following these developments, we offer in §3 an illustrative experiment in
which overly stringent accuracy requirements lead to backtracking failure, while more
relaxed tolerances would have resulted in a successful step. A concluding discussion
is given in §4.

2. A heuristic analysis. We write the nonlinear problem to be solved as F (x) =
0, where F : IRn → IRn. At a step of a Newton–GMRES method, GMRES is applied
to determine an approximate solution of the Newton equation

J(x)s = −F (x),(2.1)

where x is the current approximate solution and J(x) denotes the Jacobian (matrix) of
F at x. In the inexact Newton framework, one first chooses a forcing term η ∈ [0, 1)
(cf. [7]) and then applies GMRES until an iterate sk satisfies the inexact Newton
condition

‖F (x) + J(x)sk‖ ≤ η‖F (x)‖.(2.2)

It is shown in [4] that local convergence to a solution is controlled by the forcing
terms; in particular, by choosing the forcing terms to be sufficiently small, one can
obtain local convergence that is as fast as desired, up to the (typically q-quadratic)
rate of convergence of Newton’s method. However, as noted in §1 above, choosing
forcing terms that are too small may reduce the robustness of the method as well as
its efficiency. We now develop a heuristic analysis to offer an explanation of this.

In the following, we consider only the Euclidean norm ‖ · ‖2, although there are
extensions to other inner-product norms. If M is any matrix or operator, then we
denote its largest and smallest singular values by σmax(M) and σmin(M), respectively.
(See [9] for matters pertaining to singular values and the singular value decomposi-
tion.) Then κ2(M) = σmax(M)/σmin(M) is the condition number of M with respect
to ‖ · ‖2, provided σmin(M) 6= 0.

We begin with two observations about a step of (exact) Newton’s method. At
a current approximate solution x, the Newton step is given by sN ≡ −J(x)−1F (x).
This immediately yields our first observation: Away from a solution, where F (x) is
not small, sN is likely to be long if J(x) has small singular values.

Now let θN denote the angle between sN and the negative gradient direction for
‖F‖2 at x. We estimate how small cos θN can be, treating for convenience f ≡ 1

2‖F‖
2
2,

for which ∇f = JT F has the same direction everywhere as ∇‖F‖2. Letting J(x) =
UΣV T be the singular value decomposition of J(x), we have

cos θN =
−∇f(x)T sN

‖∇f(x)‖2 ‖sN ‖2
=

(−J(x)T F (x))T (−J(x)−1F (x))
‖J(x)T F (x)‖2 ‖J(x)−1F (x)‖2

=
‖F (x)‖22

‖J(x)T F (x)‖2 ‖J(x)−1F (x)‖2
=

‖UT F (x)‖22
‖V ΣUT F (x)‖2 ‖V Σ−1UT F (x)‖2

=
uT u

‖Σu‖2 ‖Σ−1u‖2
,

(2.3)

where u = UT F (x).
3



We claim that

1
κ2(J(x))

≤ min
u 6=0

uT u

‖Σu‖2 ‖Σ−1u‖2
≤ 2

κ2(J(x))
.(2.4)

Indeed, one sees immediately that, for u 6= 0,

uT u

‖Σu‖2 ‖Σ−1u‖2
≥ 1

κ2(Σ)
=

1
κ2(J(x))

,

and the left-hand inequality in (2.4) holds. Taking û = (1, 0, . . . , 0, 1)T ∈ IRk, we have

min
u 6=0

uT u

‖Σu‖2 ‖Σ−1u‖2
≤ ûT û

‖Σû‖2 ‖Σ−1û‖2

=
2√

σmax(J(x))2 + σmin(J(x))2
√

σmax(J(x))−2 + σmin(J(x))−2

≤ 2
σmax(J(x))σmin(J(x))−1

=
2

κ2(J(x))
,

and the right-hand inequality also holds.
It follows from (2.3) and (2.4) that an unfortunate combination of F (x) and J(x)

can result in

1
κ2(J(x))

≤ cos θN ≤ 2
κ2(J(x))

.

This yields our second observation: The Newton step can be nearly orthogonal to the
gradient of ‖F‖2 when κ2(J(x)) is large, i.e., when J is ill-conditioned.

Since GMRES steps approach the Newton step in the limit, it is plausible that
similar observations about GMRES steps hold to increasing degrees as the GMRES
iterations proceed. In the following, we establish this analytically. To simplify the
discussion, we assume that GMRES is not restarted and that no preconditioning is
used. We also assume that GMRES is applied to (2.1) with zero as the initial iterate,
which is typically the case with Newton–GMRES methods.

For convenience, we usually denote F = F (x), J = J(x), etc. We denote the
kth Krylov subspace by Kk = Kk(F, J) ≡ span {F, JF, . . . , Jk−1F} and the operator
restriction of J to Kk by J |Kk

. See [12] for these and other GMRES-related matters
raised here.

If sk is the kth GMRES iterate, then sk minimizes ‖F + Js‖2 over all s ∈ Kk.
We have the fundamental relation

JVk = Vk+1Hk,(2.5)

where Hk ∈ IR(k+1)×k is upper Hessenberg and Vk ∈ IRn×k and Vk+1 ∈ IRn×(k+1)

are matrices the columns of which are the orthonormal Arnoldi basis vectors. With
(2.5), one can show that sk = Vkyk, where yk minimizes

∥∥‖F‖2e1 + Hky
∥∥

2
over all

y ∈ IRk and e1 = (1, 0 . . . , 0)T ∈ IRk+1. Then yk = −‖F‖2H+
k e1, where “+” denotes

pseudo-inverse, and

‖sk‖2 = ‖yk‖2 = ‖F‖2 ‖H+
k e1‖2.(2.6)
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We assume that J is nonsingular and Jsk 6= −F for k < n. Then, for k ≤ n, Hk

has rank k, and ‖H+
k ‖2 = σmin(Hk)−1. Since

σmin(Hk) = min
y∈IRk,‖y‖2=1

‖Hky‖2 = min
v∈Kk,‖v‖2=1

‖Jv‖2 = σmin(J |Kk
)

and since Kk ⊆ Kk+1 for each k, it follows that ‖H+
k ‖2 grows monotonically in k to

‖J−1‖2. Thus, in view of (2.6), we have the following:
Observation: As k grows, it is likely that the GMRES step sk will become increas-

ingly long, especially if J(x) has small singular values.
We now consider the angle between sk and the negative gradient direction for

‖F‖2, which we denote by θk. In the Appendix, we offer a heuristic development
that suggests cos θk may be comparable in size to κ2(J |Kk

)−1. Since κ2(J |Kk
) grows

monotonically in k to κ2(J), we have the following:
Observation: As k grows, the GMRES step sk may become increasingly nearly

orthogonal to the gradient of ‖F‖2, especially if J(x) is ill-conditioned.
Remark. These developments apply to any more general Newton–Krylov method

that uses a “residual-minimizing” Krylov subspace method equivalent to GMRES.
See [8] for a discussion of equivalent Krylov subspace methods.

3. An illustrative experiment. In our earlier study [15], we implemented a
Newton–GMRES method with a backtracking globalization in the parallel finite-
element reacting flow code MPSalsa [13]. Briefly, MPSalsa uses a Galerkin Least
Squares (GLS) formulation for the spatial discretization, an inexact Newton scheme,
and various parallel Krylov iterative methods as implemented in the Aztec library
[10] for the linear solve. Details of this implementation can be found in [15, §4];
see also [14]. To illustrate the developments in §2 above, we applied this Newton–
GMRES implementation to the well-known 2D driven cavity problem. This was posed
in primitive-variable form and discretized using a 100× 100 equally spaced mesh, re-
sulting in 30, 486 unknowns for the discretized problem. We took the GMRES restart
value to be 200 and allowed a maximum of three restarts at each inexact Newton
step, whether or not the inexact Newton condition (2.2) was satisfied. We used right
preconditioning with a domain-based (overlapping Schwarz) ILU preconditioner. See
[15, §4] for more details of the test problem, the discretization, the preconditioner,
and the computing environment.

In this experiment, we used Reynolds number 2000 and a forcing term η = 10−4

at each inexact Newton step.4 In this case, the code declared failure at the thirteenth
inexact Newton step after the backtracking routine reduced the steplength five times
(for an overall reduction factor of 1.05×10−5) without obtaining an acceptable step. In
Table 3.1 below, we consider data associated with an illustrative subset of the GMRES
iterations at this thirteenth inexact Newton step with an eye toward assessing not only
the specific nature of the failure but also what would have happened if GMRES had
terminated at an earlier stage, with subsequent backtracking. In Table 3.1, k is the
GMRES iteration number, ‖F + Jsk‖2/‖F‖2 is the GMRES relative residual at the
iterate sk, cos θk is the cosine of the angle between sk and the negative gradient
of ‖F‖2, λk is the step reduction factor resulting from backtracking from sk, and
‖F (x + λksk)‖2 is the resulting nonlinear residual norm.

4It is important to note that this specific example is typical of many such runs and was not
contrived in any way.
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k ‖F+Jsk‖2
‖F‖2 cos θk ‖sk‖2 λk ‖F (x + λksk)‖2

0 1.0 0 1.0 2.446
5 6.72e-01 6.24e-04 2.11e+06 1.0 1.673
10 5.06e-01 5.69e-04 3.14e+06 1.0 1.380
15 4.40e-01 5.51e-04 3.51e+06 1.0 1.385
20 3.72e-01 5.39e-04 3.83e+06 1.0 1.499
25 3.33e-01 5.26e-04 4.05e+06 1.0 1.645
50 2.78e-01 4.48e-04 4.94e+06 1.0 2.250
75 9.19e-02 4.47e-04 5.32e+06 1.0 1.603
100 7.42e-02 4.30e-04 5.55e+06 1.0 1.907
150 6.46e-02 3.17e-04 7.54e+06 4.98e-01 1.789
200 5.55e-02 4.78e-05 5.00e+07 2.15e-02 2.435
300 5.55e-02 4.79e-05 4.99e+07 2.15e-02 2.435
400 1.20e-02 2.16e-06 1.11e+09 1.05e-05 2.446
500 1.09e-02 2.16e-06 1.11e+09 1.05e-05 2.446
600 2.96e-03 2.23e-06 1.08e+09 1.05e-05 2.446

Table 3.1
Data associated with the GMRES iterations at inexact Newton step 13, at which backtracking

failure occurred.

¿From Table 3.1, one sees that GMRES reduced the residual norm relatively
rapidly in the early going but was ultimately unable to produce the requested re-
duction by a factor of 10−4 within the allowed 600 iterations. During the iterations,
cos θk was reduced by a factor of about 1

280 , while ‖sk‖2 grew by a factor of more than
500. By the 400th iteration, the length of the GMRES step and its near-orthogonality
to the gradient of ‖F‖2 combined to preclude the backtracking from determining an
acceptable step within the allowable five steplength reductions. Even at the outset,
cos θk is small and ‖sk‖2 is large in an absolute sense; however, the last column of
Table 3.1 shows that backtracking would have produced an acceptable step through
the 300th GMRES iteration. In fact, the GMRES step would have been acceptable
without backtracking through the 100th iteration.

It is perhaps most notable in Table 3.1 that terminating GMRES around the tenth
iteration, corresponding to η ≈ .5, would have resulted in optimal reduction of ‖F‖2
with only a very modest number of GMRES iterations. Similar observations are valid
for all previous inexact Newton steps. This is seen in Table 3.2 below, which contrasts
the optimal and final GMRES iterates at each inexact Newton step. We note that
the optimal GMRES iterate was acceptable without backtracking at every inexact
Newton step, although this is not indicated in the table. We also note that, as seen in
the third column of the table, a value of η ≈ .5 would have resulted in near-optimal
reduction of ‖F‖2 with very few GMRES iterations at every inexact Newton step. Of
course, this value of η would have resulted in a different inexact Newton sequence, for
which other values of η might have been more appropriate. Also, no fixed value of η is
likely to be suitable for a broad range of problems. Adaptive choices that incorporate
information about F have been shown to be most widely effective in the numerical
experiments in [15]. Indeed, in the experiments in [15], the problem discussed here
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was successfully solved using such choices.

Inexact Optimal GMRES Iterate Final GMRES Iterate
Newton

Step k ‖F+Jsk‖2
‖F‖2

‖F (x+λksk)‖2
‖F‖2 k ‖F+Jsk‖2

‖F‖2
‖F (x+λksk)‖2

‖F‖2

1 4 3.66e-01 .6483 149 9.26e-05 .8915
2 2 6.65e-01 .6578 347 9.94e-05 .9400
3 12 3.52e-01 .4872 377 9.88e-05 .8946
4 11 4.57e-01 .5808 589 9.93e-05 .9377
5 11 4.67e-01 .5796 600 1.04e-03 .9988
6 11 4.67e-01 .5877 600 2.49e-04 .9988
7 11 4.67e-01 .5762 600 1.15e-03 .9992
8 11 4.67e-01 .5821 600 4.08e-04 .9996
9 11 4.67e-01 .5753 600 1.25e-03 .9996
10 11 4.67e-01 .5834 600 1.81e-04 .9981
11 11 4.67e-01 .5629 600 1.08e-03 .9925
12 10 4.94e-01 .5927 600 2.09e-04 .9867
13 12 4.65e-01 .5519 600 2.96e-03 1.000

Table 3.2
Relative linear and nonlinear residual norm reduction at the optimal and final GMRES iterates.

4. Concluding discussion. Previous studies have shown that Newton–GMRES
methods globalized with backtracking suffer loss of robustness in some cases when
overly small forcing terms are used to terminate the GMRES iterations. In the fore-
going, we have offered a heuristic analysis and an illustrative numerical experiment
that suggest a possible explanation for this. The key observations are the following:

1. The step produced by GMRES is likely to become increasingly long as the
iterations proceed, especially if the Jacobian has small singular values.

2. In addition, the step may become increasingly nearly orthogonal to the gra-
dient of ‖F‖, especially if the Jacobian is ill-conditioned.

These observations also apply to any other Newton–Krylov method that uses a resid-
ual minimizing Krylov subspace method.

¿From these observations, one sees that, while a small forcing term may result in
a step sk that considerably reduces ‖F (x)+J(x)sk‖, such a step may be so long that
F (x+sk) differs significantly from the linear model F (x)+J(x)sk. Then ‖F (x+sk)‖
may not be sufficiently reduced for sk to be acceptable, in which case backtracking is
necessary. If sk is also nearly orthogonal to the gradient of ‖F‖, then it is only a weak
descent direction, and so many steplength reductions may be required to produce an
acceptable step that the backtracking routine may declare failure before one is found.
Conversely, a larger forcing term may yield a step sk that reduces ‖F (x) + J(x)sk‖
less but is sufficiently short that F (x) + J(x)sk approximates F (x + sk) well. Then
‖F (x+ sk)‖ is more likely to be reduced enough to accept sk. Even if backtracking is
required, sk is likely to be a more robust descent direction, and backtracking is more
likely to succeed. Of course, these considerations are most important away from a
solution of the nonlinear problem. Near a solution of the nonlinear problem, ‖F‖ is
small and an accurate solution of (2.1) is relatively short and, therefore, appropriate.
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These developments suggest that there might be benefits to an approach in which
an estimate of κ2(J |Kk

) is monitored to help guide decisions on terminating the iter-
ative solution of the linear subproblems. In a Newton–GMRES method, such an esti-
mate can be economically provided by using incremental condition estimation (ICE)
[1, 2] to estimate the condition numbers of the matrices Hk (see [3] for a discussion
of this application of ICE). We leave this issue for future work.

Appendix. We develop a heuristic anaysis suggesting that cos θk may be compa-
rable in size to κ2(J |Kk

)−1. Again treating f(x) ≡ 1
2‖F (x)‖22, we denote the projection

of ∇f onto Kk by Πk∇f and the angle between sk and −Πk∇f by θΠk
. Since sk ∈ Kk,

we have

cos θk =
−∇fT sk

‖∇f‖2 ‖sk‖2
=

(−Πk∇f)T sk

‖Πk∇f‖2 ‖sk‖2
· ‖Πk∇f‖2
‖∇f‖2

= cos θΠk
· ‖Πk∇f‖2
‖∇f‖2

≤ cos θΠk
.

(A.1)

To complete our analysis, we show that cos θΠk
may be comparable in size to

κ2(J |Kk
)−1. Note that Πk∇f = VkV T

k JT F , that V T
k Vk = I ∈ IRk×k, and that

‖Vky‖2 = ‖y‖2 for all y ∈ IRk. Also, recall that sk = Vkyk, where yk = −‖F‖2H+
k e1.

Then with (2.5), we have

cos θΠk
=

(−Πk∇f)T sk

‖Πk∇f‖2 ‖sk‖2
= − (VkV T

k JT F )T sk

‖VkV T
k JT F‖2 ‖sk‖2

= −
(HT

k V T
k+1F )T V T

k Vkyk

‖HT
k V T

k+1F‖2 ‖Vkyk‖2
= −

(HT
k V T

k+1F )T yk

‖HT
k V T

k+1F‖2 ‖yk‖2
.

(A.2)

Set h1 ≡ HT
k e1, where e1 = (1, 0 . . . , 0)T ∈ IRk+1 as before. Since the first column

of Vk+1 is F/‖F‖2, we have HT
k V T

k+1F = ‖F‖2h1. Furthermore,

yk = −‖F‖2H+
k e1 = −‖F‖2(HT

k Hk)−1HT
k e1 = −‖F‖2(HT

k Hk)−1h1.

Then (A.2) yields

cos θΠk
=

‖F‖22 hT
1 (HT

k Hk)−1h1

‖F‖22 ‖h1‖2 ‖(HT
k Hk)−1h1‖2

=
hT

1 (HT
k Hk)−1h1

‖h1‖2 ‖(HT
k Hk)−1h1‖2

.

Letting Hk = Uk

(
Σk

0

)
WT

k be the singular value decomposition of Hk, where Σk ∈

IRk×k, we obtain

cos θΠk
=

hT
1 WkΣk

−2WT
k h1

‖h1‖2 ‖WkΣk
−2WT

k h1‖2

=
(Σk

−1WT
k h1)T (Σk

−1WT
k h1)

‖Σk(Σk
−1WT

k h1)‖2 ‖Σk
−1(Σk

−1WT
k h1)‖2

=
uT u

‖Σku‖2 ‖Σk
−1u‖2

,

(A.3)

where u = Σk
−1WT

k h1.
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Adapting the argument leading to (2.4), we have

1
κ2(J |Kk

)
≤ min

u 6=0

uT u

‖Σku‖2 ‖Σk
−1u‖2

≤ 2
κ2(J |Kk

)
.(A.4)

Then (A.3) and (A.4) suggest that cos θΠk
may be comparable in size to κ2(J |Kk

)−1.
We note, however, that since u = Σk

−1WT
k h1 in (A.3) cannot be arbitrarily specified,

(A.3) and (2.4) do not guarantee that cos θΠk
can be comparable in size to κ2(J |Kk

)−1.
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